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Abstract

Autonomous software holds the promise of new

operation possibilities, easier design and development

and lower operating costs. However, as those systems
close control loops and arbitrate resources on board

with specialized reasoning, the range of possible
situations becomes very large and uncontrollable from

the outside, making conventional scenario-based testing

very inefficient. Analytic verification and validation

(V&V) techniques, and model checking in particular,

can provide significant help for designing autonomous

systems in a more efficient and reliable manner, by

providing a better coverage and allowing early error
detection. This article discusses the general issue of

V&V of autonomy software, with an emphasis towards

model-based autonomy, model-checking techniques and

concrete experiments at NASA.

1. Introduction

NASA's mission of deep space exploration, coupled
with Administrator Goldin's directive to do it "faster,

better, and cheaper," has created an exciting challenge

for the computer science research community: that of

designing, building, and operating smart, adaptable, and

self-reliant autonomous spacecraft, rovers, airplanes,

and perhaps even submarines, capable of coping with

harsh and unpredictable environments. As those robotic

explorers continue to explore Mars and beyond, the

great distances from Earth will require that they be able

to independently perform not only navigation tasks and

self-diagnosis, but also an increasing amount of
autonomous or semi-autonomous on-board science. For

example, the Autonomous Controller for the In-Situ

Propellant Production facility, designed to produce

spacecraft fuel on Mars, must operate with infrequent

and severely limited human intervention to control

complex, real-time, and mission-critical processes over

periods of months or years in poorly understood

environments [ref. 1].

While autonomy offers promises of improved

capabilities at a reduced operational cost, there are

concerns about being able to design, implement and

verify such autonomous systems in a reliable and cost-
effective manner. This article discusses the general

issue of V&V of autonomy software, with an emphasis

towards model-based autonomy, model-checking

techniques and concrete experiments at NASA. Section
2 introduces autonomy software, section 3 discusses

how they can be verified, section 4 focuses on
verification of model-based autonomy, section 5

presents further applications in verification of

autonomy at NASA, and section 6 draws conclusions.

2. Autonomous Systems

2.1. The Need for Autonomy

Though information technology is taking a more and

more important part in our everyday life, we still

depend heavily on human intelligence and adaptability
when it comes to responding to unforeseen

circumstances. Even highly automated systems such as

nuclear plants, power distribution networks or
assembly lines rely on human operators in critical or

anomalous situations. This is particularly true at

NASA, where space missions are still almost entirely
controlled by human operators on earth. The successful

safe return of the crew of Apollo 13 is a famous

example where the intelligence of the crew and the
huge ground support team were essential in saving the
mission with the limited available resources. More

automation has been introduced since then, but the

tasks performed by software in space missions are

rudimentary, and every shuttle, spacecraft or space

station module in operation has a full team of highly

trained engineers constantly monitoring its health from
Earth.

The limited use of software is justified by the very

high reliability requirements for space technology: it is
very difficult to design, develop and validate software

that provides the needed functionalities. However,

ongoing progress in software technologies, coupled

with the exponential growth of computer performance,

now make it possible to go towards more autonomous

systems, where a larger part of the control is delegated

to autonomy software.

There are two main reasons driving the development of

autonomy software: one is budgetary, the other is

technical. On the budgetary side, autonomy will reduce

the need for human attendance, which is a major cost



factoratNASAandelsewhere--thisis thesame
incentive that has driven the ubiquitous appearance of

automation in less critical tasks, from dial phones to

on-line shopping. Even more importantly, though,

autonomy reduces the reliance on the communication

link between the system and its operators, opening a

full new range of opportunities:

In space, information takes more and more energy
and time to reach its destination as distance

increases --up to 20 minutes from Earth to Mars.
Local autonomous control software will enable

much faster reactions. This can increase

productivity, enable new missions or even save the

life of a spacecraft.

Even with negligible communication delays,

autonomy can provide computer-speed reaction

times in places where human response time would

be too slow with respect to the environment, as
for example in collision avoidance systems.

• Autonomy also continues to work when no

communication is possible at all because of

interference or physical obstacles. In planetary

missions, this happens when a spacecraft passes

behind a planet; in earth-bound missions, this

enables deep underground or submarine

explorations.

2.2. Model-Based Autonomy

In its simplest form, autonomy software consists of

control sequences that allow the controlled system to

achieve its particular goal while tolerating a certain

amount of uncertainty in its environment. To build

this code, the software engineer must use his or her

understanding of the system to anticipate execution

scenarios for all the possible combinations of events

that may arise, both in the system and in its

environment. The development and validation of such

scenario-based code becomes very difficult as the

system becomes more complex, due to the

combinatory explosion of the number of situations to
be handled.

Model-based reasoning (MBR) uses artificial

intelligence techniques to automate the inference of

those scenarios, using an abstract, declarative model of

the system, as shown on Figure 1. Applying efficient

reasoning rules to this model and to sensor data, an

MBR system can infer information about the current

state of the physical system, and build sequences of

actions to drive it to a desired configuration, even in

situations that were not anticipated at design time.
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Figure 1. Model-based autonomous controller

Instead of using a static, human-designed model for

controlling a system, some innovative approaches are

based on a dynamic model that is progressively

improved through a learning process. The initial

learning phase is usually done before the system is put

in service, but some further adaptation can be done

while in operation, for example as the system learns

about new unanticipated working conditions. In

particular, adaptive techniques include neural networks

or genetic algorithms.

2.3. Example: Remote Agent

The Remote Agent (RA) is an autonomous spacecraft

controller developed by NASA Ames Research Center

conjointly with Jet Propulsion Laboratory [ref. 2].

Remote Agent comprises three parts, two of which are
model-based:

• The Planner and Scheduler (PS) [ref. 3] generates

flexible plans, specifying the basic activities that

must take place. Given a mission goal, such as

taking a picture of an asteroid, the

planner/scheduler uses a model of the spacecraft's

resources to produce sequences of tasks for

achieving this goal.

The Smart Executive (EXEC) [ref. 4] receives the

plan from the planner/scheduler and commands

spacecraft systems to take the necessary actions.

The Mode Identification and Recovery (MIR),

based on the Livingstone model-based health

management system [ref. 5], uses another model

describing both the nominal and failure modes of

the different components of the spacecraft. By

comparing the observed real state with the state

predicted by the model, Livingstone can detect and

diagnose failures and suggest recovery actions to
the executive.
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Figure 2. Remote Agent

Remote Agent was demonstrated in flight on the Deep

Space One mission (DS-I) in May 1999, marking the
first control of an operational spacecraft by AI software

[ref. 6].

3. Verification of Autonomy Software

3.1. Scenario-Based Testing

Typical software development models are staged into

several phases: requirements capture, design,

implementation, verification, deployment,
maintenance. We are mainly concerned about
verification 1, which role is to assert that the

implementation performs as expected. Usually, the

verification phase is done using scenario-based testing.

The software component to be verified is embedded into
a test harness that connects to the inputs and outputs of

that component, and drives it through a suite of test
runs. Each test run is an alternated sequence of provided

inputs and expected outputs, corresponding to one
scenario of execution of the tested component. An error

is signaled when the received output does not meet the

expected one.

Even for simple systems, the design and maintenance
of test suites is a difficult and expensive process. It

requires a good understanding of the system to be
tested, to ensure that a maximum number of different

1 More generally, one speaks about verification and
validation (V&V), where verification checks the

implementation against its specification, i.e. "does
things right," whereas validation checks that the
specification itself captures the intended requirements, i.e.
"does the right things." This distinction depends on what
is considered to be the requirements and the specification;
for our purposes, we consider any mechanized evaluation
to pertain to verification, and restrict validation to human
review with respect to mental concepts. Technically, this
paper is about verification, not validation.

situations are covered using a minimum number of test

cases. Running the tests is also a time-consuming

task, because the whole program code has to be

executed and everything must be re-initialized before

each test run. In the development of complex systems,

it is quite common that testing the software actually

takes more resources than developing it.

In conventional controllers, the code to be tested

consists mostly of sequential scenarios, which are

activated explicitly by human operators through an

open control loop. It is thus quite convenient to attach
a test harness to that control channel and build test runs

that exercise each of these scenarios.

In contrast, verification of autonomous systems is

much more challenging, for several reasons:

First, autonomous systems close the control loops

and arbitrate resources on-board, making it more

difficult to plug in test harnesses and write detailed

test runs that drive the system through a desired
behavior.

Second, the range of situations to be tested is

incomparably larger. In the open loop case, it is

up to the intelligence of the experts in control to
choose the appropriate response to a situation as it

occurs. In the autonomous case, the program

implicitly incorporates response scenarios to any

combination of events that might occur. The

reaction can also depend on the current

configuration of the system, or even on its past

history in the case of adaptive systems. All these

factors multiply exponentially with the size of the

system, and a test suite can only exercise a very

limited portion of those cases.

• Third, as different concurrent parts of the

autonomous controller interact together internally,

the controller can now react in different ways to

the same stimuli, for example because of

differences in scheduling. The consequence is that a
successful test run does not even guarantee that the

system will behave correctly for the tested

scenario, because the same input sequence can lead

to different execution sequences. Another test run

could fail due to uncontrollable changes of
circumstances. This is a well-known issue in

designing concurrent systems.

The recent Remote Agent experiment CRAX) did

provide a striking example [ref. 6]. After a year of

extensive testing, Remote Agent was put in control of

NASA's Deep Space One mission on May 17, 1999. A

few hours later, RAX had to be stopped after a deadlock

had been detected. After analysis, it turned out that the
3



deadlockwascausedbyahighlyunlikelyracecondition
betweentwoconcurrentthreadsinsideRemoteAgent's
executive.The scheduling conditions that caused the

problem to manifest never happened during testing but

indeed showed up in flight. RAX was re-activated two

days later and successfully completed all its objectives.

Note that redundancy, which is the usual solution to

increase reliability, is not appropriate for software. As

opposed to hardware components, which fail

statistically because of wear or external damage,

programs fail almost exclusively due to latent design
errors. Failure of an active system is thus highly

correlated with failure of a duplicate back-up system

(unless the systems use different software designs, as in

the Shuttle's on-board computers).

3.2. Model Checking

Analytic verification is the branch of software

engineering concerned with establishing, through some
mathematically based analysis, that a computer

program fulfills a formally expressed requirement. Two
main approaches to analytic verification have been

developed:

Theorem provers build a computer-supported proof

of the requirement by logical induction over the

structure of the program;

J Model checkersrsearch all realizable executions of

the program for a violation of the requirement.

In principle, theorem provers can use the full power of

mathematical logic to analyze and prove properties of

any design in its full generality. For example, the PVS

system [ref. 7] has been applied to many NASA

applications (e.g. [ref. 8], [ref.9]). However, these

provers require a lot of effort and skill from their users

to drive the proof, making them suitable for analysis of

small-scale designs by verification experts only. In
contrast, model checking is completely automatic, and
thus more convenient for verification in on-line

software development environments, as opposed to off-

line research studies using theorem provers.

The program here is some representation of the

dynamic, generally concurrent behavior of the

application. For tractability reasons, it is usually not

the complete code from the implementation but rather
some abstract verification model 2 of the application,

2 Not to be confounded with the models used in model-

based autonomy, which we will refer to as autonomy
models. The distinction is mostly one of syntax and
purpose; both belong to the same broad family of
automata-based formalisms.

capturing only the essential features that are relevant to

the requirements to be checked, expressed in a language

that is accepted by the verification tools. Those

languages vary among different analytic verification

technologies, but the underlying mathematical

abstraction is always some kind of transition system:

the model defines the structure of a state of the system,

the set of possible initial states, and a transition

relation defining the allowed moves of the system.

The requirements to be checked can be invariants (e.g.,

a resource cannot be accessed by two processes at the

same time), temporal properties (e.g., after a process

locks a resource it will always eventually release the

lock) and even metric properties (e.g., the lock will be

released within 30 milliseconds). Other approaches
work by comparison between models (e.g., a

distributed cache memory algorithm is equivalent to a
local memory model).

In its simplest form, a model checker starts from the

initial states and repeatedly applies the transition

relation to search all reachable states for a property

violation, while remembering explored states to avoid

looping. A lot of improvements have been introduced

to make this search as flexible and efficient as possible

(e.g. partial order reduction [ref. 10] or symmetry

reduction [ref. 11]). When a property violation is

found, the model checker reports the execution trace

that leads to the violation, which is essential for

diagnosing the source of the problem.

Symbolic model checkers offer a useful alternative to

conventional explicit-state model checking as described

above. Instead of generating and exploring every single

state, symbolic model checking manipulates whole sets

of states at each step, implicitly represented as the

logical conditions that those states satisfy. These

conditions are encoded into data structures called Binary

Decision Diagrams (BDDs) [ref. 12] that provide a

compact representation and support very efficient

manipulations. For example, BDDs for a set of states
and for the transition relation can be combined to
obtain a BDD for the next set of reachable states.

Symbolic model checking can address much larger

systems than explicit state model checkers, but does

not work well for all systems: the complexity of the

BDDs can outweigh the benefits of symbolic

computations, and BDDs are still exponential in the

size of the system in the worst case. One of the major

symbolic model checkers is SMV developed by K.

McMillan and E. Clarke at Carnegie-Mellon University

(CMU) [ref. 13].

Autonomy programs and models have an abstract view

of the system they control. The nature of this

abstraction, and the corresponding programming or



modelingparadigms,canvaryaccordingtotheneedsof
eachapplication.Thekindofabstractionusedhasa
criticalinfluenceonthecomplexityandtractabilityof
theverificationtask:

Discrete models describe the system in terms of
transitions between states, where a state describes a

stable configuration of the system for some

duration of time. Discrete models are usually based
on some form of automata.

Real-time models can specify time durations

between events, whereas un-timed discrete models

only address the order in which transitions occur.

Continuous models represent the continuous

change in the system with respect to time, using

some form of differential equations.

• Hybrid models mix continuous changes and
discrete transitions.

Currently available heavy-duty model checkers, such as

Spin (Bell Labs) [ref. 14] or Murphi (Stanford) [ref.
15], are based on discrete un-timed models. Model

checking of richer formalisms is still an active field of

research: though prototype tools exist for real-time
models (Uppaal [ref. 16], Kronos [ref. 17]) or even

hybrid models (HyTech [ref. 18]), these tools still do
not scale up well to real-size models.

Finally, with adaptive systems that are designed to

modify their behavior dynamically, any kind of a priori

analytic verification becomes problematic. A solution

could reside in run-time incremental verification, where

the parts of the system affected by an adaptive re-

configuration are verified before the re-configuration is

committed. Since the verification has to be performed
on-board and during the operation of the autonomous

system, this may put very tight time and space

requirements on the verification process.

3.3. Benefits of Model Checking

Model checkers are particularly well suited for

exploring the relevant execution paths of non-

deterministic systems with multiple processes running

in parallel. Instead of executing the real code, a_riaodel

checker executes an abstract model in a highly efficient

way. Furthermore, the model checker can backtrack to

explore alternative paths from a common intermediate

state, avoiding the costly reset between test runs. It

will automatically detect already explored states, thus

exploring all executions exactly once. Finally, it

controls the scheduling of concurrent components of

the model, and will therefore explore all possible

execution sequences even for the same input sequence.

For all these reasons, model checking can provide a

much better coverage than scenario-based testing, and
do so in a much shorter time (millions of states in

hours of time).

Model checking can also be applied at an earlier stage

in the design, long before a testable implementation is

available. The cost for diagnosing and repairing faults

grows exponentially as the system is developed: the

division bug in early Pentium processors, or the
destruction of the first Ariane 5, are well-known

illustrations. In contrast, the use of analytic

verification techniques 3 allowed Silicon Graphics to

design chips that were functional on the first

fabrication run, which was unprecedented for the

manufacturer. By decreasing the human effort required
to find faults and rework software, software

development costs can be reduced and become more

predictable.

3.4. Limits of Model Checking

Model checking is limited by state space explosion: the

number of states to be explored grows exponentially in
the size of the system. In particular, model checkers do

not perform induction, and hence can only verify
systems of bounded size, in terms of reachable state

space. The major challenge to successful application of

model checking is to produce a model that is accurate
enough to provide useful information about the

system, yet small and abstract enough to produce a
state space of finite and tractable size. While this

remains the main limiting factor, the state of the art

provides tools that can handle very large systems with
several million states.

Model checking technology, especially symbolic model
checking, is extensively employed in verification of

digital hardware, where the limitation to bounded

systems is often not a limiting factor. However,

software, especially autonomy software, is both

qualitatively and quantitatively more complicated than

digital hardware. First, computer programs feature

complex and often unbounded data structures that

induce huge and often infinite state spaces. Second,

programs use more elaborate constructs such as

dynamic memory allocation, procedure calls, object

orientation or dynamic thread creation, that complicate
the task of representing and comparing their states in

an efficient way.

However, the most complex and time-consuming part

in current experiences in model checking of software is

3 Using symbolic equivalence checking, a simplified form

of symbolic model checking that compares the transition
relations of two systems [ref. 19].



notsomuchindoingtheverificationbutmainlyin
turningtheprogramsintoverifiablemodels.Typically,

no formalized high-level description of the software is

readily available; more often than not, the starting

point is the program code for the implementation.

Verifiers thus face a double challenge. First, they must

translate their applications into the input language of

the model checker. Second, they must abstract away

enough of the original system to obtain a model that

will be amenable to model checking within reasonable

time and space. Both tasks are arduous and require a

deep understanding of both the software being verified

and the model checker used to verify it. The net result

is that software model checking is currently mostly

performed off-track by V&V experts, rather than by

field engineers as part of the development process. The
translation task can be automated, but the abstraction

phase is more complex: though the formal grounds for

rigorous abstraction are a topic of active research [ref.

20], they have yet to be turned into useful tools.

3.5. The Relevance of Model Checking

Classifying model checking as an analytic verification

technology carries the idea that it is used to prove that

a design is correct. This is an over-optimistic, but also

largely incomplete picture.

It is over-optimistic because any verification result is
conditioned on the implicit hypothesis that the verified

model indeed reflects the design. Theorem proving has

the expressive power to carry arguably fully general

proofs, though on small problems and with extensive
expert guidance. Model checking, on the other hand,

suffers from the abstractions and simplifications needed

to get to a finite and tractable model. For example, a

property that is successfully verified for a system of

four components might fail for five or more

components. When an error is reported by the model

checker, the diagnostic information can be analyzed to
trace the error back to the design or to the model. If

nothing is found though, a doubt persists. For this
reason, model checking is sometimes referred to as a

falsification method, that is, a way to prove systems

wrong rather than prove them right.

In this sense, model checking is akin to testing: it does

not give absolute proof of correctness, but increases the

confidence level by exploring a quantifiable part of the

system's possible configurations. Model checking will

give a much wider coverage than testing, for a much
lower cost. On the other hand, it will overlook a whole

lot of implementation details that can only be tested on

the final implementation. Model checking does not

replace testing but complements it: testing can be
focused on later stage issues such as interface

compatibilities, while model checking will find

concurrency bugs that are very hard to track down with

testing.

Even more importantly, though, model checking is a

very powerful and flexible software understanding and

debugging tool. It makes it possible to explore a

program, look for a particular configuration, and guide
the search with a specific property, all this while

automatically going back and forth through all possible
alternative executions. It allows more errors to be

found early in the design and thus fixed at little cost,

resulting in improved software quality.

4. Verification of Model-Based Systems

Model-based autonomous systems present a particularly

tough challenge for model checking techniques. Usual

procedural programming languages such as Ada, C++

or Java can be fairly easily translated and abstracted into

transition systems for modeling purposes [ref. 21]. In

contrast, the reasoning engines used in MBR perform

complex computations using large-size data structures

capturing their knowledge about the model.

The issues of correctness of the general-purpose

reasoning engine and the application-specific model are

very different ones that we can address separately. The

autonomy model can be considered as a high-level

program that is "executed," in a somewhat unusual

way, by the reasoning engine. The reasoning engine is
a more complex, but also more stable and better

understood part. It is typically built around a couple of

clearly identified algorithms that have been subject to

careful scrutiny and documented in technical

publications. For this type of essentially sequential

algorithm, theorem proving tools seem more

appropriate. This verification work, however, is to be

done once and for all by the designers of the model-
based infrastructure.

4.1. Verification of Autonomy Models

From the point of view of autonomy application
developers, the reasoning engine should be viewed as a

stable, trustable part, just as C programmers trust their

C compilers. Their main concern is the validation of

the autonomy model they are writing with respect to
the real system that this model represents. This can be

addressed by converting this model into a verification

model that can be model-checked against expected

properties of that system.

Autonomy models are themselves high-level

descriptions, as opposed to low-level programming
code found in more conventional software development.

This is one of the main benefits of using model-based

approaches. It is also beneficial to analytic verification:

for systems of comparable complexity, an autonomy



modelismorelikelytobetractableformodel-checking
aftertranslationbutwithoutfurtherabstraction,
whereasacontrollerdevelopedusingconventional
programmingtechniqueswouldrequireimportant
simplificationstobeamenabletomodel-checking.
Thismakesanapproachbasedonpuretranslation,
whichismucheasiertoimplement,viableforpractical
use.Fortheverificationsteptobecompletely
transparenttothedeveloperofautonomousmodels,
threetranslationshavetobeprovided,asillustratedin
Figure3:

Themodel is translated from the autonomy syntax

to the verification syntax. This also produces a

correspondence map between elements of the two

models (components, variables, events, etc.);

In the property to be verified, elements of the

autonomy model are replaced by corresponding
elements of the verification model. For

convenience, this translation can also convert the

concrete syntax for properties, so that logic

operators can be expressed in the autonomy syntax
as well. Moreover, new property constructs can be

defined and expanded into those supported by the
model checker.

Conversely, in the diagnostic traces returned by the
model checker, elements of the verification model

have to be replaced back by the corresponding

elements of the autonomy model

AutonomyTrace J "_

: [
I :
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Figure 3. Translation for Model Checking of

Autonomy Models

Unlike usual computer programs, autonomy models are

not intended to describe sequences of operations but

rather to provide a description of possible operations

from which such sequences can be inferred when
needed. The model itself allows for a very wide range of

behaviors, with a relatively weak coupling between

successive steps. In terms of model checking, this

tends to produce a broad but shallow state space: the

graph of reachable states has a big branching factor,

corresponding to the numerous possible behaviors, but

all states are reached within a relatively small number

of steps.

Autonomy models such as those used in Remote Agent

also use a declarative style, where elements are

described as a combination of logic statements. This

supports abstraction and modularity, but is exposed to

completeness and consistency concerns: if a statement

is too weak, improper executions can appear; if it is

too strong, no execution can be possible. In terms of

states and transitions, inconsistency manifests itself as

a deadlock state, inconsistency as a form of non-

determinism. Both can be detected by model checking,

though not all model checkers can easily express
determinism

4.2. An Example: Symbolic Verification

of Livingstone Models

After exploratory experiments on models used by the

Remote Agent Planner/Scheduler (see Section 5.3), the

principles for verification of autonomy models set forth

in the previous section have been applied to verify

models for the Livingstone health management system

using symbolic model checking.

Livingstone is used to monitor the health of a complex

device such as a spacecraft. It tracks the commands
issued to the device and monitors device sensors to

detect and diagnose failures. To achieve this,

Livingstone relies on a model of the device that
describes, for each component, the nominal and

abnormal functioning modes, how these modes are

affected by commands and how they affect sensors. All

sensor data is processed by a set of monitors that turn

physical measures into a priori defined discrete values

such as high, medium and low. The Livingstone model

thus represents a combination of concurrent discrete,

finite-state transition systems.

The ASE group at NASA Ames, in collaboration with

Prof. Reid Simmons at Carnegie Mellon University

(CMU) has developed a translator from Livingstone

models to the SMV symbolic model checker [ref. 13].

The essence of the translation is fairly straightforward,

due to the similar synchronous concurrency model used

in both Livingstone and SMV (i.e. all components

take a lock-step transition at each step). The main

difficulty comes from discrepancies in variable naming
conventions between the Lisp-like syntax of

Livingstone and the Pascal-like syntax of SMV.

Toexpress properties to be verified, SMV supports the

powerful temporal logic CTL. In the Livingstone

model, such properties are encapsulated in special

declarations and written in a Lisp-like style that is
consistent with the rest of the Livingstone model.

Predefined specification patterns and variables can also

7



beusedforcommonpropertiessuchasconsistency,
reachabilityofgivencomponentmodesorexistenceof
abrokencomponent.Thesedeclarationsarecaptured
andconvertedintoSMVsyntaxbythetranslator.For
example,aproperty

(all (globally (implies (on (heater hl))

(high (temp tl)))))

in the Livingstone model could be translated into the

following SMV statement:

AG ((hl.mode = on) -> (tl.temp = high))

Work is in progress at CMU for converting SMV

diagnostic traces back into Livingstone syntax, thereby

completing the bridge between Livingstone and SMV.

Consistency and completeness are a prime source of

trouble for designers of Livingstone models. For

example, each mode of each component has a list of
associated transition declarations

(name :when cond :next mode)

that work as guarded commands: "if cond holds, then
transition to mode". For the model to work correctly,

it is required that exactly one of the cond of each
active mode hold at each step. If two transitions are

enabled simultaneously, then two next modes are

enforced at the same time, resulting in inconsistency.

The translator supports predefined properties to check

for such errors. When the predefined property

: consistency is given, the translator extracts the

guards of all transitions and generates, for each mode, a

mutual exclusion property among its transitions.

The translator is being used at NASA Kennedy Space

Center by the developers of a Livingstone model for

the In-Situ Propellant Production facility (ISPP), a

system that will produce spacecraft propellant using the

atmosphere of Mars, The translator allows the model

developers at Kennedy to express the propert!es to be

checked in their familiar modeling syntax, then invoke

the SMV model checker without writing a single line

of SMV syntax. First experiments have shown that

SMV can easily process the ISPP model and verify

useful properties such as reachability of normal

operating conditions or recoverability from failures.
The current version of the ISPP model, with 10s°

states, can still be processed in less than a minute

using SMV optimizations (re-ordering of variables).

The Livingstone model of ISPP features huge state

spaces but little depth (all states can be reached within

at most three transitions), for which the symbolic

processing of SMV is very appropriate.

4.3. Verification of Model-Based

Applications

Model checking of an autonomy model only addresses

its validity as an abstraction of a physical system, not

its adequacy as support for model-based reasoning for

which it is designed. Feeding a sensible model into a

sound reasoning engine does not guarantee that the

desired answer will always be obtained. The problems

addressed by model-based systems are of high

computational complexity, or even not decidable in

general, so the reasoning engines are based on partial,

heuristic algorithms that may fail to find a solution

even if such a solution exists. For example, a planner
might not be able to find a plan to achieve a given

goal. It may also happen that, although the model is

correct, the engine does not have enough information

to give a correct answer. For example, a fault might
not be diagnosed because of insufficient sensory

information. It is therefore still desirable to perform

analytical verification over the whole model-based

system, that is, consider both the reasoning engine and

the autonomy model it uses.

When we look at the autonomous controller as a

whole, the autonomy model is data used by the

reasoning engine, as opposed to a dynamic model of its

own. In order to apply model checking to the complete

application, we need a verification model of the

reasoning engine and its data structures, including the

autonomy model. Producing such a model would be an

arduous and error-prone task. Furthermore, the size of

the data structures involved would severely limit the
number of states that can be covered.

Nevertheless, an intermediate approach, halfway

between testing and model checking, can be considered.

We will refer to this approach as analytic testing. Like

conventional testing, the real reasoning engine is

executed inside a testing environment, rather than

simulating some abstract model of it. In particular, the
environment has to contain a simulator for the

controlled system. However, the engine and the
environment code are instrumented in order to allow

finer control over how the test is executed. Instead of

running a handcrafted sequence of test runs, the test

driver uses the same kind of systematic exploration

algorithm as used in model checkers to drive the

system through a whole range of scenarios, while

looking for violations of desired properties.

How far this approach can go will depend on the

provided instrumentation. At least, the test driver
should be able to control scheduling of the different

components, both in the engine and in the

environment, stop execution at choice points and select

which branch is followed (e.g. which fault is



simulated).The VeriSoft tool (Lucent) [ref. 22] applies

this principle to C programs. If the state of the

application can also be accessed and modified by the

test driver, then it is possible to perform an exhaustive

exploration. Otherwise, as in Verisoft, loops cannot be

detected and the exploration has to be pruned at an

arbitrary depth.

This analytic testing would provide a better accuracy of
the verification results, since no translation or

abstraction of the verified system takes place. While

verification of models can search for potential causes of

incorrect reasoning, analytic testing of complete

applications will allow actually checking that the

reasoning engine tells the right thing. On the other
hand, analytic testing will run real code and thus be

much more hungry in computing resources, so the

search space will have to be narrowed down to a

tractable range, typically by focusing on a few typical
mission scenarios.

As far as we know, little work has been done until now

to address verification of model-based autonomy

applications as a whole. In the coming months, we

will develop analytic testing technology for the

Livingstone system at NASA Ames, as a continuation
of the work done on Livingstone models described in

the previous section.

5. Other Experiences at NASA

In addition to verification of Livingstone models

described in Section 4.2, this section presents other

examples of verification done on autonomy software at
NASA. Most of them have been performed by the

Automated Software Engineering group (ASE) at
NASA Ames Research Center. They focus on

components of Remote Agent, described in Section
2.3.

5.1. Verification of Remote Agent

Executive

A team from the ASE group used the Spin model

checker to verify the core services of RA EXEC and

found five concurrency bugs [ref. 23]. Four of these

bugs were deemed important by the executive software

development team, which considers that these errors
would not have been found through traditional testing.

Once a tractable Spin model was obtained, it took less

than a week to carry out the verification activities.
However, it took about 1.5 work-months to manually

construct a model that could be run by Spin in a

reasonable length of time, starting from the Lisp code

of the executive. The initial models were not

sufficiently abstract and simple to be tractable by Spin.

This is a typical case of a conventional V&V effort: an

existing system is handed to V&V experts who have a

hard time understanding the original design and

distilling it down to a tractable model, and then find

and report concurrency bugs. It stresses the cost of

modeling, as opposed to verification. The designers of

the Executive would arguably have much less trouble

doing the modeling work, since they know their

program much better, but would have a hard time

learning Spin and tuning the model to a tractable size.

5.2. Search for the RAX Anomaly

Shortly after an anomaly was discovered in RA EXEC

during the Remote Agent Experiment (RAX) in May
1999, the ASE team took the challenge of performing

a "clean room" experiment to determine whether the

bug could have been found using verification and
within a short turnaround time. Over the following

weekend, a front-end group selected suspect sections of

the code, and a back-end group performed the modeling

in Java and the verification in Spin, using the group's

Java-to-Spin translator Java Pathfinder [ref. 21]. The

hardest part was to understand the Lisp source code of

EXEC. It then took three hours to produce a two-page

Java program that models the backbone of the

concurrent structure of two tasks and reproduces the

bug. As it turned out, this bug was a deadlock due to

improper use of synchronization events, and is identical

to one of the five bugs detected in another part of

EXEC with Spin two years before.

The main lesson is not so much in the success of this

verification effort than in the correlation with the

previous one: it proves that the kind of concurrency

bugs that were found and fixed in another part of the
system can indeed pass through heavy test screens and

compromise a mission. Besides this, it stresses again

the difficulty of the modeling phase. It also illustrates
the convenience of Java's concurrent programming

primitives for modeling purposes.

5.3. Verification of Remote Agent
Planner/Scheduler Models

Researchers from ASE conducted preliminary

experiments in translating Planner/Scheduler models to

the SMV, Spin and Murphi model checkers [ref. 24].

Those models are composed of a large number of

tightly coupled declarative constraints whose combined

effects are difficult to apprehend. Automated validation
can find inconsistencies and determine whether implicit

properties of the model can be derived from the set of

explicit constraints. The experiments were done on a
small model of an autonomous robot. A useful subset

of the planner modeling language, covering the robot

example, could be translated in all three model
checkers. No translation tool was built, but the

9



translationswere done by hand in a systematic way

amenable to automation. The analysis identified several

flaws in the model that were not identified during

testing. Out of the three model checkers used, SMV

allowed the most direct translation and was by far the

fastest: 0.05 seconds vs. =30 seconds for Spin or

Murphi.

This was the first experiment by ASE in model

checking of autonomy models. The good performance
of SMV can be attributed to different factors:

The declarative style of Planner models is directly
translatable in SMV models, whereas it has to be

simulated by a big iteration loop in Murphi and

Spin.

• Planner models are weakly constrained: a lot of

states can be reached at any time. Spin and Murphi
have to enumerate all those states and transitions

explicitly, whereas the symbolic computations in

SMV involve fairly compact logical expressions.

Planner models also contain timing information that

was ignored here since un-timed model checkers were
used. The Autonomy group at NASA Ames is

currently pursuing further experiments using the

Uppaal real-time model checker [ref. 16].

5.4. Consistency Checking of Remote

Agent Traces

While testing the Remote Agent, long logs of

exchanged messages were generated. These logs have to
be searched for errors by experts, a cumbersome and

error-prone task. The Formal Methods group at Jet

Propulsion Laboratories has used a database to verify
those traces [ref.25]. The traces were checked for

consistency with explicit design requirements (so-called

flight rules), and correct message flow. The messages,

and their ordering, were entered as objects in the

database, and the flight rules and message flow

requirements were then formulated as queries on the
database. It took around two minutes to check each

query on a set of about 60 traces. All traces were found

to meet all the requirements.

This is a different and quite original approach. Analytic

verification is performed on test results, not on the

system itself, so the results have a more limited

significance. On the other hand, it relates to system-

level testing of the whole Remote Agent, whereas

model checkers can only deal with smaller sub-

components. This approach was also much easier and

faster to set up than a typical model checking task.
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6. Conclusions

Because of the internal complexity of autonomous
controllers, and the huge range of situations that they

can potentially address, scenario-based testing provides

a very limited coverage. Model checking can help to

find the concurrency problems that would be

overlooked in testing, and fix them earlier in the

development and thus at cheaper cost.

For autonomy software based on conventional

programming techniques, the analytic verification

issues do not differ much from those met in other

software systems such as communication protocols or

safety-critical controllers. The main obstacle is the

translation and abstraction work required to go from a

complex piece of software to an abstract model of
tractable size.

For model-based autonomy applications, recent

experiments have shown successful use of symbolic

model checking for the verification of autonomy
models. The high level of abstraction of those models

allows model checking to be applied on direct
translations, without further abstraction. Verification of

complete model-based applications is beyond the reach

of model checking, but an intermediate solution

applying model checking principles to support analytic

testing has been outlined.

A key factor in the future success of model checking,

and other analytic verification technologies, is their

close integration in the development environment of

autonomous system designers. The principles alone

require some learning phase; users are not willing to

spend more time to learn the input language of a model

checker, and re-write their program in that language. If

the model checker becomes just another button next to

the source-level debugger, then developers will

definitely use it and reap its benefits.

Autonomous software requires even more reliability
than current critical control software, because there will

be little or no human supervision to detect and act

upon unexpected failures at run-time. Analytic V&V

can become the key enabling factor for using

autonomous systems, providing the necessary level of

assurance that the right thing will be happening when

no one is watching.
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